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ABSTRACT 
It is well known that every planar kinematical linkage can 
be decomposed into basic topological structures referred 
as Assur Groups. A new reformulation of Assur Group 
concept into the terminology of rigidity theory, as Assur 
Graphs, has yielded the development of new theorems and 
methods.  
The paper reports on an algorithm for systematic 
construction of Assur Graph classes, termed fundamental 
Assur Graphs. From each fundamental Assur Graph it is 
possible to derive an infinite set of different Assur Graphs.  
This mapping algorithm is proved to be complete and 
sound, i.e., all the Assur Graphs appear in the map and 
each graph in the map is an Assur Graph. Once we 
possess the mapping of all the Assur Graphs, all valid 
kinematical linkage topologies can be constructed through 
various Assur Graph compositions.  
 

1.   INTRODUCTION 
This paper introduces a systematic methodology 

enabling the derivation of the topologies of all planar 
linkages. Although this generic perspective yields all 
planar linkage topologies, it is done using only two 
operations. 

The idea behind the paper is based on the works of 
Assur (Assur 1952), but in a way different than he had 
anticipated. The idea behind Assur’s work was to 
decompose every linkage into Assur groups, based on the 
following theorem: for every linkage there is a unique 
decomposition into Assur groups. While Assur had used 
this theorem for analysis, the work, reported in the paper, 
is used for topological synthesis. The work here 
introduces a method to construct all the Assur groups, by 
only two operations based on theorems from rigidity 
theory. Once the Assur groups have been constructed,  

different combinations between them yield diverse 
topologies of linkages. Thus, we now have a way to 
construct all the topologies of any planar linkage. 
The mathematical proof underlying this work is to be 
found in two papers published in the rigidity theory 
community. The first paper was published in 2003 by 
Berg and Jordan, who proved that there is a set of graphs 
that all can be derived by using only two operations (Berg 
and Jordan, 2003). They called these graphs – generic 
cycles.  One of the results shown in a recently published 
paper (Servatius et al., 2009a) is that there is a relation 
between Assur groups and these generic cycles.  
These two works constitute the mathematical foundation 
underlying this paper. The Assur groups were 
reformulated in terms of graphs, and using two operations 
similar to those reported in (Berg and Jordan, 2003) 
enable the derivation of all the Assur groups. 
Since the paper deals with engineering issues using 
material from rigidity theory, new definitions are 
introduced and Assur groups are treated and defined as 
Assur graphs, and for sake of brevity are written AGs. 
Many works have been published related to the 
topological synthesis, some are mentioned below, while 
the main motivation was to develop an “atlas” or a catalog 
of all the possible mechanisms.  
The main idea that underlies most of the works published 
in this field was to enumerate the different topologies of 
mechanisms satisfying the equation of degrees-of-
freedom, such as Chebyshev-Gruebler equation using 
graph theory techniques to handle their topology. 
In 1964, Freudenstein and Dobrjanskys (1964) 
enumerated mechanisms according to “groups”, such that 
every member of a given group has the same number of k-
nary links for any k. 
Crossley (1964a) developed an algorithm for the 
enumeration of mechanisms according to their groups and 
found that linkages having four, six and eight links have 
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one, two, and sixteen chains, respectively. For linkage 
with ten links he reported that there are 222 different 
kinematic chains (Crossley, 1964b). 
Thus, for each type of mechanism, different enumeration 
methods have been developed, for example: for geared 
kinematic chains a method based on Polya’s theorem was 
developed and revealed the existence of twenty-three 
geared-kinematic chains with up to five links (Buchsbaum 
and Freudenstein, 1970); enumeration of Epicyclic Gear 
Mechanisms was done by enumerating the corresponding 
topology representation - the canonical graph 
representation (Tasai, 1988); for planar two-DOF 
linkages, Crossley found that there are 32 non-isomorphic 
kinematic structures with three independent loops 
(Crossley, 1964);  in 1984, an atlas of the graphs of the 
kinematic chains of mechanisms with up to six links, was 
reported (Mayourian and Freudenstein, 1984); 
comprehensive description of enumeration methods for 
mechanisms and gear trains appears in a book by Tsai 
(Tsai, 2001). It was found that the number of different 
mechanisms identified by different methodologies is 
actually not unique. For example, Woo (1967) had 
reported on 230 different ten-link kinematic chains, which 
is eight more than the number reported by Crossley, 
appearing above. 
Another approach that was examined was a method 
developed in Russia, by L.V. Assur in 1916, in his 
dissertation "Investigation of planar mechanisms of lower 
pairs from the point of view of their classification and 
structure", reprinted in (Assur, 1952). 
Although the interest and works have emerged during the 
years while using Assur Groups, and the idea that it is 
possible to construct new mechanisms from them, Assur 
Groups are currently used mostly in Eastern Europe and 
have not been used for enumeration and synthesis. Some 
of the reasons for that appear in (Olson et al., 1985): 
“However, Assur did not devise a convenient symbolic 
notation, and his classification system is quite unwieldy to 
use, but it encouraged others to seek a symbolic notation 
specifically for the purpose of enumerating kinematic 
chains”. 
It should be noted, that the above obstacle has been 
overcome and this paper relies on the new symbolic 
notation of Assur Groups, which are now termed Assur 
Graphs and currently based on theorems and methods 
from rigidity theory (Servatius, 1999)  as appears in the 
previous publication of the author (Servatius et al., 
2010a). Once Assur Groups have been reformulated in 
terms of rigidity theory, the classification theorem 
becomes easy to implement using works reported in the 
last decade. 
Another reservation about Assur Groups appears in 
(Dobrjanskyj, 1966), page 11: “The theorem stated on 
page 8 (about the unique decomposition) has never been 
proven and it seems questionable whether all mechanisms 

can be derived in such a manner”. This theorem was 
proved in previous publication of the author (Servatius et 
al., 2010a), this time based on theorems from rigidity and 
matroid theories. 
But perhaps the main disadvantage of Assur groups, as 
appears in (Olson et al., 1985), is that they are limited to 
planar mechanisms only. Preliminary results (Shai 2008; 
2009) and new results appearing in section 5, indicate that 
this obstacle also can be overcome by relying on theorems 
and methods from rigidity theory.  

2.  OVERVIEW OF THE ASSUR GRAPH CONCEPT 
Assur groups, occasionally referred as Assur 

Structures, are widely used in the kinematical community, 
particularly among Russian scientists. Leonid Assur 
(Assur, 1952) developed these basic structures in order to 
make it possible to decompose any linkage into 
components of zero mobility, and for each one of those, to 
develop special methods for analysis of locations, 
velocities, accelerations and other physical properties.  
The concept has been reformulated for the first time in 
rigidity theory terminology in (Servatius et al., 2009a,b), 
where it was defined as a rigid graph, for which deletion 
of any vertex results in a non-rigid graph. Accordingly, it 
has been shown that an Assur Graph is a basic entity 
applicable to treatment not only of kinematical systems, 
but also static systems. 
The current work employs Assur graphs as the central 
building block of the topological synthesis of all the 2D 
mechanisms. Since the paper deals only with the topology 
of planar linkages and all the mathematical foundation of 
this paper is based on graph theory, the terminology used 
in the paper is from graph theory and can be found in any 
basic textbooks on the subject, such as (Swamy and 
Thulasiraman,  1981). For example, joints are referred to 
as vertices, links as edges and structures as graphs. 
Moreover, to avoid other terminologies used in the rigidity 
theory community and not in mechanical engineering, the 
definitions appearing in the paper are slightly modified by 
giving them more physical than combinatorial meaning.  
 
To clarify the terminology used in the paper let us define 
the structure depicted in Figure 1 in both terminologies. In 
the terminology of engineering this is a determinate truss 
with four rods/bars, two joints – A and B, three pinned 
joints connecting rods 1,2 and 4 to the ground, while each 
rod has its specific geometry (length, inclination angle, 
etc.). Therefore, in engineering terminology there is a 
difference between the two determinate trusses in Figure 
1. 
In the terminology of rigidity theory the graph in Figure 
1a is a rigid graph with four edges, two inner vertices, 
three ground vertices, three ground edges – 1,2 and 4 and 
there is no notion of geometry of the elements. Thus, from 
the rigidity theory point of view there is no difference 
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between the two graphs in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Two configurations with the same 
topology of a determinate truss (rigid graphs). 

 
Now, we shall define Assur graphs and outline what 
distinguishes them from other rigid graphs. 
 
Assur Graph – is a minimally rigid graph with 
e(G)=2*v(G) where e(G) and v(G) stand for the number 
of edges and inner vertices of graph G, respectively. The 
main property of the graph is that removal of any vertex 
with its incident edges makes the graph non-rigid.  
The graph, appearing in Figure 2(a) is an Assur Graph 
since the number of the edges is twice the number of the 
inner vertices, it is rigid and all its sub-graphs are not 
rigid. For example, the graph in Figure 2(b) is obtained 
from the graph Figure 2(a) by deleting vertex C and all its 
incident edges, resulting in a linkage. The system in 
Figure 2(c) is obtained by deleting vertex D and is also a 
linkage. In contrast, the structure in Figure 3(a) is not an 
Assur Graph since deleting vertex C results in an Assur 
Graph, known as the Triad, shown in Figure 3(b). 
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Figure 2.  Example of a determinate truss that is 
Assur Graph. 

a) Assur Graph.  b,c) The graphs after deleting 
vertices C and D, respectively. 
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Figure 3.  Example of a graph that is not an Assur 

Graph 

 
In each Assur Graph there are two types of vertices: 
ground vertices, called also pinned vertices, and inner 
vertices. 
For example, in a triad type Assur Graph (Figure 3b) there 
are three inner and ground vertices while in the dyad type  
Assur graph there are two ground vertices and one inner 
vertex.  
The composition rule for constructing a determinate truss 
from its components (Assur Graphs) is done as follows: 
Let G1 and G2 be two Assur Graphs. G1 is defined to be 
preceding G2 if at least one ground vertex of G1 is 
connected to an inner vertex of G2.  
The decomposition process can be presented by a directed 
graph in which an edge e=<u,v> indicates that the Assur 
Graph corresponding to vertex u is preceding another 
Assur Graph, presented by vertex v. This means that in 
order to decompose Assur Graph ‘v’, Assur Graph ‘u’ has 
first to be removed, thus this graph is termed in the paper 
– decomposition graph.  
For example, in Figure 4.b the graph presents the order in 
which the determinate truss in Figure 4.a can be 
decomposed. We start with the initial vertex - a vertex to 
which no edge is incident. In this example the initial 
vertex 'F' corresponds to the dyad with the inner vertex 'F' 
and the two edges (F,G) and (F,J).  Once this dyad is 
removed it is possible to remove, independently the dyads 
G or J, and so forth.  
 

 
 
Figure  4.  Example of decomposition a determinate 

truss into Assur Graphs. 
a) The determinate truss. b) The decomposition 

graph. 
 
 
From the above it follows that once we have all the Assur 
Graphs it is possible to construct all different determinate 
trusses by composing different Assur Graphs, each time in 
a different order.  
The transformation from determinate trusses into planar 
linkages is easy and is done by just augmenting a driving 
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link, each time to a different ground vertex of the 
corresponding determinate truss. In Figure 5 we can see 
the three planar linkages in which the driving link is 
augmented, each time to a different ground vertex. 
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Figure 5. Example of several linkages corresponding 
to the same determinate truss. 

(a) The Assur Graph. (b), (c), (d) The corresponding 
linkages. 

 
2. EMPLOYING ASSUR GRAPHS FOR ANALYSIS 
 
Although the paper is aiming towards synthesis of 
linkages through AGs, in this section it is explained 
briefly that the concept of decomposition of a system into 
AGs enabling at each step to analyze a small component 
of the system. The method relies on the properties of the 
decomposition graph. In the first sub-section we show 
how to analyze mechanisms using bottom-up method, i.e., 
the first component to analyze corresponds to the vertex 
that is connected to the ground in the decomposition 
graph.  
In the following sub-section it is shown that for analysis 
of a determinate truss, a top-down method is used, where 
the first component to analyze corresponds to the leaf 
vertex in the decomposition graph.     

2.1 Analysis of Mechanisms through Assur 
Graphs 

Every linkage results in a determinate truss after 
removing its driving link, i.e. as mentioned above, 
decomposed into Assur Graphs, for each of which there 
exist special methods for analysis. 
In order to get as small matrices as possible for analysis, 
the analysis is done through the decomposition graph, but 
this time in the composition order. First, the analysis is 
done on the Assur Graph that all of its outer vertices are 
ground vertices, i.e., vertices that their velocities are 
known. After calculating the velocities of inner vertices of 
the Assur graph, this AG is then deleted and its inner 
vertices are replaced with ground vertices. This process 

ends when all the vertices of the linkage are grounded.   
This analysis process is demonstrated by solving the 
velocities in the mechanisms appearing in Figure 6a. 
First, the driving link is replaced with a ground vertex and 
a structural scheme is constructed (Figure 6b), for which a 
decomposition graph with three Assur Graphs is 
constructed as shown in Figure 6c. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure  6.  Example for decomposition of a linkage 
into Assur Graphs. 

a) The linkage. b) The structural scheme. c) 
The decomposition graph. 

 
 
In this example, the first Assur Graph to be analyzed  is 
the tetrad – (B,C,D,J) where the two outer vertices, A and 
p4, are ground vertices thus the inner velocities – 
B,C,D,E,J can be calculated. The second AG that can be 
analyzed is (G,H,I) or the dyad F. In this example, the 
second AG chosen, arbitrarily, to be analyzed is the dyad 
F, where now the velocity of the outer vertex – J is known 
from the previous AG, as shown in Figure 7b,b1. The last 
AG is the triad (G,H,I) whose velocity of the outer vertex 
E is known from the first AG – (B,C,D,J). 
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Figure 7.  Analysis process of a mechanism through 

the decomposition into Assur Graphs. 

2.2 Analysis of Determinate Trusses through 
Decomposition into Assur Graphs 

The analysis process is done somewhat in a similar 
way related to the analysis of velocities in kinematics, but 
this time in a reversed order, i.e., in the decomposition 
order 
The process is as follows: 

1. Search for an Assur Graph that can be removed 
and at least one force, which is acting on one of 
its vertices.  

2. Remove this AG, add ground vertices to its outer 
vertices with ground vertices and calculate the 
forces in its internal edges. 

3. Replace all the ground edges of the removed AG 
with external forces with the same magnitude and 
direction forces in its ground edges. 

4. Go to  1. 
An example of applying this analysis process appears in 
Figures 8 and 9. The determinate truss for which the 
analysis is applied consists of three triads and one dyad, as 

appears in Figure 8a. 

 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Determinate Truss and its corresponding 

decomposition graph. 
 

Figure 9 depicts the process of analyzing the 
determinate truss appearing in Figure 8a, each time an 
AG is being analyzed. First, the triad (A,B,C) can be 
removed and since on one of its vertices, vertex B, 
acts an external force thus this AG is the first to be 
removed and analyzed (Figure 9b). The inner forces 
in the three ground edges, (AK), (CD) and (B,K), of 
the latter AG become external forces that act on the 
remaining determinate truss: PBK, PCD, PAD, as shown 
in Figure 9c. This process continues and is applied on 
the dyad K (Figure 9c), then triad (G,H,I) as shown in 
Figure 9d, and ends with the analysis of the triad 
(E,D,F) upon which four external forces act (Figure 
9e). 
  

 
 

Figure 9. The process of analyzing the series of 
Assur Graphs composing the determinate truss 

appearing in Figure 8a. 
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3. THE PROCESS OF DERIVING ALL THE ASSUR 
GRAPHS IN 2D 

In this section we show that it is possible to derive all 
the AGs in 2D by only two operations. All the AGs, 
although there is an infinite amount, are arranged in a very 
unique order as shown in the map appearing in this 
section. This map is proved to be complete and sound, i.e., 
all the AGs appear in this map and all the graphs that 
appear in the map are AGs. 
 

3.1 The two extension operations  
The Assur Graphs are arranged in a table with infinite 

rows and infinite columns; they are all derived from one 
basic Assur Graph, called dyad, as shown in Figure 11a, 
by applying only two types of extensions. The first 
extension, termed fundamental extension, produces all the 
Assur Graphs in the first row, called also the fundamental 
Assur Graphs. This operation is done by replacing a 
ground edge by a triangle and two new ground edges, as 
shown in 10(a,a1). The fundamental AGs can also be 
related as representatives, since from each one of them it 
is possible to derive an infinite number of different AGs. 
This is done by applying a second extension, termed 
regular extension, that divides, splits,  one of the edges 
(x,y) by a new vertex, z, and adding a new edge (z,t) for 
some vertex  t/=x,y, as shown in Figure 10(b,b1). 
Figure 11 depicts example of AGs that are the result of 
applying a sequence of extensions, starting from the basic 
AG – the dyad (Figure 11a). The first row presents the 
fundamental AGs, called also the representatives, all 
derived from the basic dyad through applying the 
fundamental extensions. For example, the fundamental 
AG in Figure 11b known also as Triad, is obtained by 
replacing the ground edge (A,O2) with the triangle 
<A,B,C> with the two new ground edges (C,O2) and 
(B,O3). All the other infinite fundamental AGs are 
obtained in the same way; each time a ground edge is 
replaced with a triangle and two new ground edges. Now, 
that we can generate all the fundamental AGs, each one of 
them defines an infinite number of new AGs, all derived 
by applying successive regular extensions. For example, 
the AG in (b1) is derived from the fundamental AG, the 
triad, by applying the regular extension on edge (A,B) by 
adding vertex D and adding the additional edge – the 
ground edge – (D,O4). In the subsequent extension to 
(b2), the additional edge is an inner edge (E,B). 
 

A 

(a) 

A 

A2 

(a1) 

x y 

t 

(b)

x y 

z 

t 

(b1) 

A1

Figure 10.  The result of applying fundamental and regular 
extensions (a1,b1) on ground and inner edges (a,b), 

respectively 
 
Applying the two types of extensions infinite number of 
times, enables deriving the infinite map of all the AGs in 
2D as shown in table 1. This work is based on theorems 
and methods developed in the rigidity theory community, 
in particular on the work of Berg and Jordan (2003) where 
they mathematically proved that all the rigidity circuits in 
2D can be derived from the complete graph with four 
vertices, called K4. Based on a new relation between 
rigidity circuits and Assur Graphs (Servatius et al., 2010; 
Shai, 2008; Shai 2009) it can be proved that the following 
map is both complete and sound, i.e., all the AGs can be 
found and every graph produced by the two extensions is 
an AG.  
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3.2 The Map of All the AGs 
In the previous section we have shown that there are 

two types of extensions with which all new AGs can be 
constructed from the basic AG – the dyad. In this section 
we show that all the AGs can be arranged in an elegant 
mathematical order – in a form of an infinite map.  
The first operation, the fundamental extension, produces 
each time an Assur Graph that is the representative of 
infinite AGs. Thus, each fundamental AG can be regarded 
as a representative of a class containing infinite AGs that 
can be derived only from this fundamental AG. 
This canonical structure is depicted in an infinite map 
(table 1) where the first row corresponds to all the 
fundamental AGs and all the AGs in that column are those 
that can be derived from it. In other words, the map 
consists of infinite classes, each corresponding to a 
different column, where the element in the first row is the 
representative – the fundamental AG. 
 

Figure 11. The resultant of AGs after applying several 
            times the two types of extensions. 
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Table 1.  Some classes of Assur graphs in 2D

3.3 The Proof of  the Completeness and 
Soundness of the 2D Assur Graph Map 

In this section we show that the map of all the 
Assur Graphs in 2D is complete and sound, i.e., all 
the Assur Graphs can be derived through the above 
two operations and all the graphs that are derived by 
applying the two operations are Assur Graphs. The 
mathematical foundation underlying this proof is 
based on two works reported in the rigidity theory 
literature. The first work was published in 2003 
(Berg and Jordan, 2003) who proved that there exists 
an infinite set of graphs with e=2v-2 possessing one 
self-stress on all the edges, i.e., internal forces on all 
the edges that satisfy the force equilibrium around 
each vertex. Thus, in the terminology adopted in this 
paper, they called floating rigid graphs, since they 
are not grounded, with e=2v-2 that possess a unique 
self-stress on all the edges. They called these types of 
rigid graphs with the above property related to self-

stress as - generic cycles. Figure  12 shows floating 
rigid graphs with the same number of edges and 
vertices but only the one appearing in Figure 12b is a 
generic cycle since it possesses a  unique self-stress. 
On the other hand, the floating graph in Figure 12a 
possesses a self-stress only in the left part of the 
graph and not on all edges thus it is not a generic 
cycle.  

 
 

 
Figure  12.  Example of two floating rigid 

graphs. 
a) Not a generic cycle. b) Generic cycle 

(a) (b) 
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In their work, Berg and Jordan proved that it is 
possible to derive all the generic cycles from only 
one floating rigid graph, termed K4, a graph with 
four vertices, six edges and an edge between any two 
vertices as shown in Figure 13a. They have used two 
operations: the 1-extension and the 2-sum. The first 
operation is used in the current paper as well, while 
the latter is similar to the logical exclusive OR - XOR 
operation: two generic cycles are joined, glued, by 
deleting a common edge and the remaining edges 
constitute the result of the 2-sum. Example of such 
joining, gluing, two floating graphs K4s appears in 
Figure 13 where the gluing is done on edges 2 and 7, 
thus they do not appear in the resulted generic cycle 
(Figure 13.c). 
 

 
Figure 13.  The 2-sum of two floating rigid 

graphs - K4. 
a) The two floating rigid graphs- K4. b) The 

resultant floating rigid graph. 
 

The second work that the proof is based on is in 
(Servatius et al., 2009a,b) which established the 
relation between Assur Graphs and generic cycles. In 
the latter paper it was proved that every Assur Graph 
corresponds to a generic cycle by contracting all of 
its ground vertices into one vertex. This latter graph 
is termed a contracted Assur Graph. In Figure 14a 
appears a triad, for which contracting its three ground 
vertices results in the known complete graph, K4. 
 

 
Figure  14.  Transforming an Assur Graph into a 

generic cycle (contracted Assur Graph). 
a) The triad. b) The corresponding contracted 

Assur Graph – K4. 
 
It can be easily verified that all the Assur Graphs 
appearing in table 1 can be reformulated in the 
terminology of generic cycles. Thus, since for the 
latter it was proved that the two operations guarantee 
completeness and soundness thus it is valid also for 
all Assur Graphs. 
Now that we have all the primitive building blocks, 
the AGs, we have the ability to construct all the 

different topologies of planar linkages, as highlighted 
in the following section.  
 

4. TOPOLOGICAL SYNTHESIS OF ALL 2D 
MECHANISMS THROUGH ASSUR GRAPHS 

Once we have all the AGs in 2D it is possible to 
derive all the topological data of all the 2D 
mechanisms, by composing different AGs under the 
condition that the following composition rule is 
satisfied: 
 
The composition rule of AGs:  
Let G and T be two AGs. G can be composed on T if:  
a. Any one of the ground vertices of G is connected 
to an inner vertex of T or to the ground. 
b. The number of vertices that G is connected to is 
greater than or equal to two. 
Figure 15 depicts several examples of determinate 
trusses that are compositions of one triad and one 
dyad.  
 
 
 
 
 
 
 
 
 
 
 
Figure 15.  The composition resultants of a triad 

and a dyad. 
 
Once we have all the compositions of Assur Graphs, 
i.e., various determinate trusses, the process of 
obtaining various linkages from them is done easily 
by connecting a driving link to one of the ground 
vertices. For example, in Figure 16 for a determinate 
truss (16a), which consists of a composition of a 
tetrad on a triad, there are four corresponding 
linkages since there are four ground vertices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B A 

C 1 

2 

4 5 

6 

3 

B A 

C 
1 2 

4 5 

6 

3 

(a) (b) 

1 

2 

3 

4 

6 5 

8 

9 

10 

7 

11 12 

1 

3 

4 

6 5 

8 

9 

10

11 12 

(a) (b) 



 10 Copyright © 2010 by ASME 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 - Example of different linkages 
corresponding to a given determinate truss.  

 
 
 

5. TOPOLOGICAL SYNTHESIS OF 3D 
MECHANISMS THROUGH ASSUR GRAPHS 
The idea introduced above for 2D linkages was found 
to be applicable also for 3D. We start again with the 
dyad, this time consisting of three ground edges 
instead of two, as shown in Figure 17a. In the 
fundamental extension we replace each ground edge 
with a triangle, but this time two edges come out 
from each of the two new vertices, as shown in 
Figures 17b,c where a 3D triad was constructed 
through a fundamental extension operation from the 
3D dyad. The ground edge that is replaced with the 
triangle and four ground edges are indicated by the 
bold edge. 

 
Figure  17.  Example of a fundamental 

extension in 3D. 
a) The 3D dyad. b) The 3D triad. 

 
The idea of the classes, and that each fundamental 
Assur Graph is the representative of a class of Assur 
Graphs is the same as in 2D, only this time the 
operation of transforming one Assur Graph into the 
successor is done through 2-extension. In the 2-
extension the vertex that is added is connected this 
time to two other vertices and not to one as is done in 
the 1-extension. Example of deriving an Assur Graph 
from 3D triad (Figure 18a) appears in Figure 18b,c 
where the edges being split are indicated by the bold 
edges. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure  18.  Example of applying the 2-
extesnion in a 3D Assur Graph. 

a) The fundamental Assur Graphs spatial triad. 
b,c) The resulting Assur Graph after applying the 

2-extension. 
 
The structure of the 3D map is the same as for the 2D 
Assur Graph. The first column consists of the spatial 
dyad, which also does not have a correspondence in 
the 3D Assur Graph, thus there are no derivations in 
that column. The first row consists of the 
fundamental Assur Graphs, and each column contains 
all the derivations from that representative using 2-
extension operation. 
In contrast to 2D, there is no mathematical proof for 
the completeness of the 3D Assur Graphs. The main 
reason for that is that there are still mathematical 
problems that have not yet been resolved by the 
mathematicians in the rigidity theory community. 
Among these is the Assur Graph, appearing in Figure 
19, for which there is no derivation from any 
fundamental Assur Graphs. The main problem is that 
the degree of each vertex in this graph is at least five. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  19.   Example of a 3D Assur Graph for 
which there is no derivation from any 

fundamental Assur Graphs. 
 
 

It is expected that some of the problems that 
engineers and mathematicians encounter in 3D are to 
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be solved by using Assur Graphs. For example, there 
are known structures and graphs for which all the 
formulas for calculating the degrees of freedoms, 
such as: Grubler equation or Laman's theorems 
provide wrong answers. However, when we 
decompose the graphs into Assur Graphs we reveal 
the reason for the problem and might be able to 
overcome it. For example, in Figure 20a appears a 
floating structure, a structure with no grounding, and 
although its DOF is equal to six, i.e., should be a 
rigid body, it has a finite motion  since the upper and 
the lower parts can rotate related to each other along 
the virtual axis – FD.  
But, when we first ground the structure by pinning 
joints E,H and G (Figure 20b) the resultant structure 
is decomposed into a triad and two dyads (Figures  
20c,d).  Now that we have the decomposition and the 
building blocks, the AGs, the problem is revealed. 
The triad is connected to the other structure, the two 
dyads, by only two joints. It is easy to prove (Shai, 
2008) that in any dimension d, the number of joints 
that any AG should be connected to the remaining 
graph should be at least d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 - The decomposition of the "double 
banana" structure into Assur Graphs 

a) The floating structure. b) The corresponding 
determinate truss. c,d) the decomposition and its 

graph. 
 

 

7. CONCLUSIONS AND FURTHER 
RESEARCH  

The paper shows that the main criticism against 
Assur Groups: "Assur did not devise a convenient 
symbolic notation, and his classification system is 

quite unwieldy to use" has been overcome.  
Moreover, it has been shown that there is an order in 
building all the topologies of the AGs, which all 
starts from the most basic topology - the dyad. Then 
through only two operations all the Assur Graphs are 
produced and arranged in an elegant order. The Assur 
Graphs are arranged in a table with infinite columns 
and infinite rows and each Assur graph in the table 
has a specific sequence of applying the mentioned 
two operations. It should be noted that it was proven 
in the references quoted that the two operations 
preserve the combinatorial properties of Assur 
Graphs. 
Once we have all the Assur Graphs, when we connect 
several Assur graphs by connecting ground joints of 
one graph into inner joints of the other and adding 
driving links, we obtain the topology of all the 
linkages. Thus, we have the possibility to have all the 
topologies of all the planar linkages by applying 
different compositions on AGs and adding driving 
links. 
Another limitation of the Assur Groups approach, as 
appears in the literature and mentioned in the paper, 
is that it is limited for planar mechanisms only.  As 
appears in the paper and in previous publications of 
the author, it is possible to extend the AGs into three 
dimensions, but for now there are many AGs that it is 
impossible to derive them through known extensions. 
But, this paper reports for the first time in the 
engineering community that it is possible to solve 
known problems related to calculating degrees of 
freedoms of mechanisms through AGs.  
 
A lot of effort is being put in our research group to 
establish the 3D map of all the AGs. For now, the 
map that we have is sound but not complete. All the 
graphs that are produced by the existing extension 
methods derive AGs but there are many AGs that 
cannot be derived. We all hope that at the next ASME 
conference we will be able to introduce the complete 
3D map of the AGs, the extension of this paper. 
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